
95-865 Unstructured Data Analytics

George Chen

Week 4: More clustering, topic models

Cluster Interpretation

Demo

Automatically Choosing k

For k = 2, 3, … up to some user-specified max value:

Fit model using k

Compute a score for the model

Use whichever k has the best score

No single way of choosing k is the “best” way

But what score function should we use?

Here’s an example of a score
function you don’t want to use

But hey it’s worth a shot

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Cluster 2

Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance
from each point to
its cluster center

Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance
from each point to
its cluster center

Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance
from each point to
its cluster center

Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance
from each point to
its cluster center

Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance
from each point to
its cluster center

Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance
from each point to
its cluster center

Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance
from each point to
its cluster center

Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance
from each point to
its cluster center

Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance
from each point to
its cluster center

Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Measure distance
from each point to
its cluster center

Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Residual sum of squares for cluster 1:  
sum of squared purple lengths

Measure distance
from each point to
its cluster center

Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Residual sum of squares for cluster 1:

Measure distance
from each point to
its cluster center

RSS1 =
∑

x∈cluster 1

∥x − µ1∥2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Cluster 2

Repeat similar calculation
for other cluster

Residual sum of squares for cluster 2:

Measure distance
from each point to
its cluster center

RSS2 =
∑

x∈cluster 2

∥x − µ2∥2

Repeat similar calculation
for other cluster

Measure distance
from each point to
its cluster center

Residual Sum of Squares

Cluster 1

Cluster 2

In general if there are k clusters:

Remark: k-means tries to minimize RSS  
(it does so approximately, with no guarantee of optimality)

RSS only really makes sense for clusters that look like circles

RSS = RSS1 + RSS2 =
∑

x∈cluster 1

∥x − µ1∥2 +
∑

x∈cluster 2

∥x − µ2∥2

RSS =
k∑

g=1

RSSg =
k∑

g=1

∑

x∈cluster g

∥x − µg∥2

Why is minimizing RSS a bad
way to choose k?

What happens when k is equal to the number of data points?

A Good Way to Choose k

Want to also measure between-cluster variation

RSS measures within-cluster variation

W = RSS =
k∑

g=1

RSSg =
k∑

g=1

∑

x∈cluster g

∥x − µg∥2

B =
k∑

g=1

(# points in cluster g)∥µg − µ∥2

mean of all points
A good score function to use for choosing k:

Pick k with highest CH(k)

n = total # points
(Choose k among 2, 3, … up to
pre-specified max)

Called the CH index 
[Calinski and Harabasz 1974]

CH(k) =
B · (n − k)
W · (k − 1)

Automatically Choosing k

Demo

Going from Similarities to Clusters

Generative models

There’s a whole zoo of clustering methods

Hierarchical clustering
Top-down: Start with everything in 1

cluster and decide on how to
recursively split

1. Pretend data
generated by specific

model with parameters
2. Learn the parameters 

("fit model to data")
Bottom-up: Start with everything in its

own cluster and decide on how to
iteratively merge clusters

Two main categories we'll talk about:

3. Use fitted model to
determine cluster assignments

Is Clustering Structure Enough?

1

2User
clusters

k

1 2 3 4 5
Items

m

Is Clustering Structure Enough?

1

2User
clusters

k ! ! ! ! ! !

" " ! ! " !

" ! " ! ! !

1 2 3 4 5
Items

m

Is Clustering Structure Enough?

1

2User
clusters

k ! ! ! ! ! !

" " ! ! " !

" ! " ! ! !

1 2 3 4 5
Items

m

What if these two users shared a Netflix account
(and used the same user profile)?

Is Clustering Structure Enough?

1

2User
clusters

k ! ! ! ! ! !

" " ! ! " !

" ! " ! ! !

1 2 3 4 5
Items

m

In general: How do we handle when a user
appears to belong to multiple clusters?

What if these two users shared a Netflix account
(and used the same user profile)?

Topic Modeling
Movie recommendation

Text

Health care

Each user is part of multiple “clusters”/topics
Each cluster/topic consists of a bunch of movies  

(example clusters: “sci-fi epics”, “cheesy rom-coms”)

Each document is part of multiple topics
Each topic consists of a bunch of regularly co-occurring words  

(example topics: “sports”, “medicine”, “movies”, “finance”)

Each patient’s health records explained by multiple “topics”
Each topic consists of co-occurring “events”  

(example topics: “heart condition”, “severe pancreatitis”)

Topic Modeling
Movie recommendation

Text

Health care

Each user is part of multiple “clusters”/topics
Each cluster/topic consists of a bunch of movies  

(example clusters: “sci-fi epics”, “cheesy rom-coms”)

Each document is part of multiple topics
Each topic consists of a bunch of regularly co-occurring words  

(example topics: “sports”, “medicine”, “movies”, “finance”)

Each patient’s health records explained by multiple “topics”
Each topic consists of co-occurring “events”  

(example topics: “heart condition”, “severe pancreatitis”)

In all of these examples:
• Each data point (a feature vector) is part of

multiple topics
• Each topic corresponds to specific feature

values in the feature vector likely appearing

Latent Dirichlet Allocation (LDA)
• Easy to describe in terms of text (but works for not just text)

• Input: “document-word” matrix, and pre-specified # topics k

• Output: what the k topics are (details on this shortly)

2
1
2

…

n

Word

Document

…1 d

i-th row, j-th column: # times word j appears in doc i

• A generative model

LDA Example
Alice’s text Bob’s text

weather
food

0.1
0.9

0.5
0.5

Topic

Document

weather food
cold
hot

apple
pie

0.3
0.7
0.0
0.0

0.1
0.3
0.5
0.1

Topic

Word

Each word in Alice’s text is generated by:
1. Flip 2-sided coin for Alice
2. If weather: flip 4-sided coin for weather  

If food: flip 4-sided coin for food

LDA Example
Alice’s text Bob’s text

weather
food

0.1
0.9

0.5
0.5

Topic

Document

weather food
cold
hot

apple
pie

0.3
0.7
0.0
0.0

0.1
0.3
0.5
0.1

Topic

Word

Each word in Bob’s text is generated by:
1. Flip 2-sided coin for Bob
2. If weather: flip 4-sided coin for weather  

If food: flip 4-sided coin for food

LDA Example
Alice’s text Bob’s text

weather
food

0.1
0.9

0.5
0.5

Topic

Document

weather food
cold
hot

apple
pie

0.3
0.7
0.0
0.0

0.1
0.3
0.5
0.1

Topic

Word

Each word in doc. i is generated by:
1. Flip 2-sided coin for doc. i
2. If weather: flip 4-sided coin for weather  

If food: flip 4-sided coin for food

“Learning the topics”
means figuring out
these 4-sided coin

probabilities

LDA

Topic 1
Word 1
Word 2

…
Word d

Topic 2 Topic k

…

Doc. 1
Topic 1
Topic 2

…
Topic k

Doc. 2 Doc. n

…

LDA models each word in document i to be generated as:
• Randomly choose a topic Z (use topic distribution for doc i)
• Randomly choose a word (use word distribution for topic Z)

Goal: Learn these distributions

LDA
• Easy to describe in terms of text (but works for not just text)

• Input: “document-word” matrix, and pre-specified # topics k

2
1
2

…

n

Word

Document

…1 d

i-th row, j-th column: # times word j appears in doc i

• A generative model

• Output: the k topics’ distribution of words

LDA

Demo

How to Choose Number of Topics k?

Coherence (within cluster/topic variability):

Inter-topic similarity (between cluster/topic variability):

For a specific topic, look at the m most probable words (“top words”)

Count # top words that do not appear in
any of the other topics’ m top words

Something like CH index is also possible:

(number of “unique words”)

Can average
each of these

across the
topics

X

top words v ,w
that are not the same

log
documents that contain both v and w

documents that contain w
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> log of P(see word v | see word w)

+ 0.1

avoid
numerical

issues

Topic Modeling: Last Remarks

• There are actually many topic models, not just LDA

• Dynamic topic models: tracks how topics change over time

• Example: for text over time, figure out how topics change

• Correlated topic models, Pachinko allocation,  
biterm topic models, anchor word topic models, …

• Example: for recommendation system, figure out how
user tastes change over time

Now…back to clustering

Going from Similarities to Clusters

Generative models

There’s a whole zoo of clustering methods

Hierarchical clustering
Top-down: Start with everything in 1

cluster and decide on how to
recursively split

1. Pretend data
generated by specific

model with parameters
2. Learn the parameters 

("fit model to data")
Bottom-up: Start with everything in its

own cluster and decide on how to
iteratively merge clusters

Two main categories we'll talk about:

3. Use fitted model to
determine cluster assignments

Top-down: Divisive Clustering
0. Start with everything

in the same cluster

1. Use a method to
split the cluster

(e.g., k-means, with k = 2)

Top-down: Divisive Clustering

(e.g., k-means, with k = 2)
2. Decide on next

cluster to split
(e.g., pick cluster with

highest RSS)

0. Start with everything
in the same cluster

1. Use a method to
split the cluster

Top-down: Divisive Clustering

(e.g., k-means, with k = 2)

(e.g., pick cluster with
highest RSS)

2. Decide on next
cluster to split

0. Start with everything
in the same cluster

1. Use a method to
split the cluster

Top-down: Divisive Clustering

(e.g., k-means, with k = 2)

(e.g., pick cluster with
highest RSS)

2. Decide on next
cluster to split

0. Start with everything
in the same cluster

1. Use a method to
split the cluster

Top-down: Divisive Clustering

(e.g., k-means, with k = 2)

0. Start with everything
in the same cluster

1. Use a method to
split the cluster

(e.g., pick cluster with
highest RSS)

2. Decide on next
cluster to split

Top-down: Divisive Clustering

(e.g., k-means, with k = 2)

(e.g., pick cluster with
highest RSS)

2. Decide on next
cluster to split

0. Start with everything
in the same cluster

1. Use a method to
split the cluster

Top-down: Divisive Clustering

(e.g., k-means, with k = 2)

(e.g., pick cluster with
highest RSS)

2. Decide on next
cluster to split

0. Start with everything
in the same cluster

1. Use a method to
split the cluster

Top-down: Divisive Clustering

(e.g., k-means, with k = 2)

(e.g., pick cluster with
highest RSS)

Stop splitting when some
termination condition is reached

(e.g., highest cluster RSS is small enough)

2. Decide on next
cluster to split

0. Start with everything
in the same cluster

1. Use a method to
split the cluster

Top-down: Divisive Clustering
We can view the process

in terms of a tree 
(colors are not important
here and just help relate

to the previous slide)
Each split is

from k-means

Top-down: Divisive Clustering

Each split is
from k-means

We could keep splitting until the leaves each have 1 point

We can view the process
in terms of a tree 

(colors are not important
here and just help relate

to the previous slide)

Top-down: Divisive Clustering

We could keep splitting until the leaves each have 1 point

This tree is called a
dendrogram
Helpful for visualizing
all the intermediate
clustering stages

Divisive clustering uses global information and keeps splitting

Agglomerative
clustering

(bottom up) goes
the other way

Bottom-up: Agglomerative Clustering

0. Every point starts
as its own cluster

Bottom-up: Agglomerative Clustering

0. Every point starts
as its own cluster

1. Find the “most similar” two clusters
(e.g., pick pair of clusters with

closest cluster centers)

Bottom-up: Agglomerative Clustering

0. Every point starts
as its own cluster

1. Find the “most similar” two clusters
(e.g., pick pair of clusters with

closest cluster centers)

2. Merge them

Bottom-up: Agglomerative Clustering

0. Every point starts
as its own cluster

1. Find the “most similar” two clusters
(e.g., pick pair of clusters with

closest cluster centers)

2. Merge them

Bottom-up: Agglomerative Clustering

0. Every point starts
as its own cluster

1. Find the “most similar” two clusters
(e.g., pick pair of clusters with

closest cluster centers)

2. Merge them

Bottom-up: Agglomerative Clustering

0. Every point starts
as its own cluster

1. Find the “most similar” two clusters
(e.g., pick pair of clusters with

closest cluster centers)

2. Merge them

Bottom-up: Agglomerative Clustering

0. Every point starts
as its own cluster

1. Find the “most similar” two clusters
(e.g., pick pair of clusters with

closest cluster centers)

2. Merge them

Bottom-up: Agglomerative Clustering

0. Every point starts
as its own cluster

1. Find the “most similar” two clusters
(e.g., pick pair of clusters with

closest cluster centers)

2. Merge them

Bottom-up: Agglomerative Clustering

0. Every point starts
as its own cluster

1. Find the “most similar” two clusters
(e.g., pick pair of clusters with

closest cluster centers)

2. Merge them

Bottom-up: Agglomerative Clustering

0. Every point starts
as its own cluster

1. Find the “most similar” two clusters
(e.g., pick pair of clusters with

closest cluster centers)

2. Merge them

Bottom-up: Agglomerative Clustering

0. Every point starts
as its own cluster

1. Find the “most similar” two clusters
(e.g., pick pair of clusters with

closest cluster centers)

2. Merge them

Bottom-up: Agglomerative Clustering

0. Every point starts
as its own cluster

1. Find the “most similar” two clusters
(e.g., pick pair of clusters with

closest cluster centers)

2. Merge them

Bottom-up: Agglomerative Clustering

0. Every point starts
as its own cluster

1. Find the “most similar” two clusters
(e.g., pick pair of clusters with

closest cluster centers)

2. Merge them

Bottom-up: Agglomerative Clustering

0. Every point starts
as its own cluster

1. Find the “most similar” two clusters
(e.g., pick pair of clusters with

closest cluster centers)

2. Merge them

Bottom-up: Agglomerative Clustering

0. Every point starts
as its own cluster

1. Find the “most similar” two clusters
(e.g., pick pair of clusters with

closest cluster centers)

2. Merge them

Bottom-up: Agglomerative Clustering
Dendrogram

Agglomerative clustering uses local information and keeps merging

Don’t have to keep
merging until there’s

1 cluster!
(e.g., stop when closest

two clusters have distance
between their centers
exceed a threshold)

Bottom-up: Agglomerative Clustering
Some ways to define what it means for two clusters to be “close”  
(needed to find most similar clusters):

Single linkage: use distance
between closest points
across the two clusters

Centroid linkage: what
we saw already (distance
between cluster means)

Example: Single Linkage

What would single linkage merge next?

Distance between blue and green:

Distance between blue and red:

Distance between green and red:

1

1

3

1

Single linkage would merge either blue with green, or green with red

Bottom-up: Agglomerative Clustering
Some ways to define what it means for two clusters to be “close”  
(needed to find most similar clusters):

Single linkage: use distance
between closest points
across the two clusters

Complete linkage: use
distance between
farthest points across
the two clusters

Centroid linkage: what
we saw already (distance
between cluster means)

Example: Complete Linkage

What would complete linkage merge next?

Distance between blue and green:

Distance between blue and red:

Distance between green and red:

1

3

6

4

Complete linkage would merge blue and green

Bottom-up: Agglomerative Clustering
Some ways to define what it means for two clusters to be “close”  
(needed to find most similar clusters):

Single linkage: use distance
between closest points
across the two clusters

Complete linkage: use
distance between
farthest points across
the two clusters

Centroid linkage: what
we saw already (distance
between cluster means)

There are other ways as well:
none are perfect

Hierarchical Clustering

Demo

Bottom-up: Agglomerative Clustering
Some ways to define what it means for two clusters to be “close”  
(needed to find most similar clusters):

Single linkage: use distance
between closest points
across the two clusters

Complete linkage: use
distance between
farthest points across
the two clusters

Centroid linkage: what
we saw already (distance
between cluster means)

There are other ways as well:
none are perfect

Ignores 
items in

each cluster
Has “chaining”

behavior

Has “crowding”
behavior

Going from Similarities to Clusters

Generative models

There’s a whole zoo of clustering methods

Hierarchical clustering
Top-down: Start with everything in 1

cluster and decide on how to
recursively split

1. Pretend data
generated by specific

model with parameters
2. Learn the parameters 

("fit model to data")
Bottom-up: Start with everything in its

own cluster and decide on how to
iteratively merge clusters

Two main categories we'll talk about:

3. Use fitted model to
determine cluster assignments

Going from Similarities to Clusters
Generative models Hierarchical clustering

Top-down: Start with everything in 1
cluster and decide on how to

recursively split

1. Pretend data
generated by specific

model with parameters
2. Learn the parameters 

("fit model to data")
Bottom-up: Start with everything in its

own cluster and decide on how to
iteratively merge clusters3. Use fitted model to

determine cluster assignments

You learn a model 
➔ can predict cluster assignments

for points not seen in training

Easily works with different distances
(not just Euclidean)

Great for problems that don’t need
to predict clusters for future points

The most popular models effectively
assume Euclidean distance…

Different split/merge criteria lead to
clusters that look specific ways 

(e.g., chaining, crowding)

Example: Clustering on U.S. Counties

No need to predict which cluster new counties should
belong to, since we’re already looking at all U.S. counties!

(using opioid death rate data across 37 years)

Image source: Amanda Coston

How to Choose a Clustering Method?

Some questions to think about:

• For your application, what distance/similarity makes sense?

• Do you care about cluster assignments for new points?

In general: not easy!

• What features to even cluster on?

It’s possible that several clustering methods give similar results
(which is great! — it means that there are some reasonably
“stable” clusters in your data)

• Example: tons of clustering methods can figure out from
senate voting data who Democrats and Republicans are (of
course, without knowing each senator’s political party)

Clustering Last Remarks
Ultimately, you have to decide on which clustering method and
number of clusters make sense for your data

If you can set up a prediction task, then you can use the
prediction task to guide the clustering

• After you run a clustering algorithm, make visualizations to
interpret the clusters in the context of your application!

• Some times it makes more sense to define your own score
function for how good a clustering assignment is

• Do not just blindly rely on numerical metrics  
(e.g., CH index)

