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Week 4: More clustering, topic models



Cluster Interpretation

Demo



Automatically Choosing k

For k = 2, 3, … up to some user-specified max value:

Fit model using k

Compute a score for the model

Use whichever k has the best score

No single way of choosing k is the “best” way

But what score function should we use?



Here’s an example of a score 
function you don’t want to use

But hey it’s worth a shot
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Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Residual sum of squares for cluster 1:  
sum of squared purple lengths

Measure distance 
from each point to 
its cluster center



Cluster 2

Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Residual sum of squares for cluster 1:

Measure distance 
from each point to 
its cluster center

RSS1 =
∑

x∈cluster 1

∥x − µ1∥2



Residual Sum of Squares

Look at one cluster at a time

Cluster 1

Cluster 2

Repeat similar calculation 
for other cluster

Residual sum of squares for cluster 2:

Measure distance 
from each point to 
its cluster center

RSS2 =
∑

x∈cluster 2

∥x − µ2∥2



Repeat similar calculation 
for other cluster

Measure distance 
from each point to 
its cluster center

Residual Sum of Squares

Cluster 1

Cluster 2

In general if there are k clusters:

Remark: k-means tries to minimize RSS  
(it does so approximately, with no guarantee of optimality)

RSS only really makes sense for clusters that look like circles

RSS = RSS1 + RSS2 =
∑

x∈cluster 1

∥x − µ1∥2 +
∑

x∈cluster 2

∥x − µ2∥2

RSS =
k∑

g=1

RSSg =
k∑

g=1

∑

x∈cluster g

∥x − µg∥2



Why is minimizing RSS a bad 
way to choose k?

What happens when k is equal to the number of data points?



A Good Way to Choose k

Want to also measure between-cluster variation

RSS measures within-cluster variation

W = RSS =
k∑

g=1

RSSg =
k∑

g=1

∑

x∈cluster g

∥x − µg∥2

B =
k∑

g=1

(# points in cluster g)∥µg − µ∥2

mean of all points
A good score function to use for choosing k:

Pick k with highest CH(k)

n = total # points
(Choose k among 2, 3, … up to 
pre-specified max)

Called the CH index 
[Calinski and Harabasz 1974]

CH(k ) =
B · (n − k )
W · (k − 1)



Automatically Choosing k

Demo



Going from Similarities to Clusters

Generative models

There’s a whole zoo of clustering methods

Hierarchical clustering
Top-down: Start with everything in 1 

cluster and decide on how to 
recursively split

1. Pretend data 
generated by specific 

model with parameters
2. Learn the parameters 

("fit model to data")
Bottom-up: Start with everything in its 

own cluster and decide on how to 
iteratively merge clusters

Two main categories we'll talk about:

3. Use fitted model to 
determine cluster assignments
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What if these two users shared a Netflix account 
(and used the same user profile)?



Is Clustering Structure Enough?

1

2User 
clusters

k ! ! ! ! ! !

" " ! ! " !

" ! " ! ! !

1 2 3 4 5
Items

m

In general: How do we handle when a user 
appears to belong to multiple clusters?

What if these two users shared a Netflix account 
(and used the same user profile)?



Topic Modeling
Movie recommendation

Text

Health care

Each user is part of multiple “clusters”/topics
Each cluster/topic consists of a bunch of movies  

(example clusters: “sci-fi epics”, “cheesy rom-coms”)

Each document is part of multiple topics
Each topic consists of a bunch of regularly co-occurring words  

(example topics: “sports”, “medicine”, “movies”, “finance”)

Each patient’s health records explained by multiple “topics”
Each topic consists of co-occurring “events”  

(example topics: “heart condition”, “severe pancreatitis”)



Topic Modeling
Movie recommendation

Text

Health care

Each user is part of multiple “clusters”/topics
Each cluster/topic consists of a bunch of movies  

(example clusters: “sci-fi epics”, “cheesy rom-coms”)

Each document is part of multiple topics
Each topic consists of a bunch of regularly co-occurring words  

(example topics: “sports”, “medicine”, “movies”, “finance”)

Each patient’s health records explained by multiple “topics”
Each topic consists of co-occurring “events”  

(example topics: “heart condition”, “severe pancreatitis”)

In all of these examples: 
• Each data point (a feature vector) is part of 

multiple topics 
• Each topic corresponds to specific feature 

values in the feature vector likely appearing



Latent Dirichlet Allocation (LDA)
• Easy to describe in terms of text (but works for not just text)

• Input: “document-word” matrix, and pre-specified # topics k

• Output: what the k topics are (details on this shortly)

2
1
2

…

n

Word

Document

…1 d

i-th row, j-th column: # times word j appears in doc i

• A generative model



LDA Example
Alice’s text Bob’s text

weather
food
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0.5
0.5

Topic
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weather food
cold
hot

apple
pie

0.3
0.7
0.0
0.0

0.1
0.3
0.5
0.1

Topic

Word

Each word in Alice’s text is generated by:
1. Flip 2-sided coin for Alice
2. If weather: flip 4-sided coin for weather  

If food: flip 4-sided coin for food
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LDA Example
Alice’s text Bob’s text

weather
food

0.1
0.9

0.5
0.5

Topic

Document

weather food
cold
hot

apple
pie

0.3
0.7
0.0
0.0

0.1
0.3
0.5
0.1

Topic

Word

Each word in doc. i is generated by:
1. Flip 2-sided coin for doc. i
2. If weather: flip 4-sided coin for weather  

If food: flip 4-sided coin for food

“Learning the topics” 
means figuring out 
these 4-sided coin 

probabilities



LDA

Topic 1
Word 1
Word 2

…
Word d

Topic 2 Topic k

…

Doc. 1
Topic 1
Topic 2

…
Topic k

Doc. 2 Doc. n

…

LDA models each word in document i to be generated as:
• Randomly choose a topic Z (use topic distribution for doc i)
• Randomly choose a word (use word distribution for topic Z)

Goal: Learn these distributions



LDA
• Easy to describe in terms of text (but works for not just text)

• Input: “document-word” matrix, and pre-specified # topics k

2
1
2

…

n

Word

Document

…1 d

i-th row, j-th column: # times word j appears in doc i

• A generative model

• Output: the k topics’ distribution of words



LDA

Demo



How to Choose Number of Topics k?

Coherence (within cluster/topic variability):

Inter-topic similarity (between cluster/topic variability):

For a specific topic, look at the m most probable words (“top words”)

Count # top words that do not appear in 
any of the other topics’ m top words

Something like CH index is also possible:

(number of “unique words”)

Can average 
each of these 

across the 
topics

X

top words v ,w
that are not the same

log
# documents that contain both v and w

# documents that contain w
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> log of P(see word v | see word w)

+ 0.1

avoid 
numerical 

issues



Topic Modeling: Last Remarks

• There are actually many topic models, not just LDA

• Dynamic topic models: tracks how topics change over time

• Example: for text over time, figure out how topics change

• Correlated topic models, Pachinko allocation,  
biterm topic models, anchor word topic models, …

• Example: for recommendation system, figure out how 
user tastes change over time



Now…back to clustering



Going from Similarities to Clusters

Generative models

There’s a whole zoo of clustering methods

Hierarchical clustering
Top-down: Start with everything in 1 

cluster and decide on how to 
recursively split

1. Pretend data 
generated by specific 

model with parameters
2. Learn the parameters 

("fit model to data")
Bottom-up: Start with everything in its 

own cluster and decide on how to 
iteratively merge clusters

Two main categories we'll talk about:

3. Use fitted model to 
determine cluster assignments



Top-down: Divisive Clustering
0. Start with everything 

in the same cluster

1. Use a method to 
split the cluster

(e.g., k-means, with k = 2)
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(e.g., k-means, with k = 2)

(e.g., pick cluster with 
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Top-down: Divisive Clustering

(e.g., k-means, with k = 2)

(e.g., pick cluster with 
highest RSS)

Stop splitting when some 
termination condition is reached

(e.g., highest cluster RSS is small enough)

2. Decide on next 
cluster to split

0. Start with everything 
in the same cluster

1. Use a method to 
split the cluster



Top-down: Divisive Clustering
We can view the process 

in terms of a tree 
(colors are not important 
here and just help relate 

to the previous slide)
Each split is 

from k-means



Top-down: Divisive Clustering

Each split is 
from k-means

We could keep splitting until the leaves each have 1 point

We can view the process 
in terms of a tree 

(colors are not important 
here and just help relate 

to the previous slide)



Top-down: Divisive Clustering

We could keep splitting until the leaves each have 1 point

This tree is called a 
dendrogram
Helpful for visualizing 
all the intermediate 
clustering stages

Divisive clustering uses global information and keeps splitting

Agglomerative 
clustering 

(bottom up) goes 
the other way



Bottom-up: Agglomerative Clustering

0. Every point starts 
as its own cluster
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Bottom-up: Agglomerative Clustering
Dendrogram

Agglomerative clustering uses local information and keeps merging

Don’t have to keep 
merging until there’s 

1 cluster!
(e.g., stop when closest 

two clusters have distance 
between their centers 
exceed a threshold)



Bottom-up: Agglomerative Clustering
Some ways to define what it means for two clusters to be “close”  
(needed to find most similar clusters):

Single linkage: use distance 
between closest points 
across the two clusters

Centroid linkage: what 
we saw already (distance 
between cluster means)



Example: Single Linkage

What would single linkage merge next?

Distance between blue and green:

Distance between blue and red:

Distance between green and red:

1

1

3

1

Single linkage would merge either blue with green, or green with red



Bottom-up: Agglomerative Clustering
Some ways to define what it means for two clusters to be “close”  
(needed to find most similar clusters):

Single linkage: use distance 
between closest points 
across the two clusters

Complete linkage: use 
distance between 
farthest points across 
the two clusters

Centroid linkage: what 
we saw already (distance 
between cluster means)



Example: Complete Linkage

What would complete linkage merge next?

Distance between blue and green:

Distance between blue and red:

Distance between green and red:

1

3

6

4

Complete linkage would merge blue and green



Bottom-up: Agglomerative Clustering
Some ways to define what it means for two clusters to be “close”  
(needed to find most similar clusters):

Single linkage: use distance 
between closest points 
across the two clusters

Complete linkage: use 
distance between 
farthest points across 
the two clusters

Centroid linkage: what 
we saw already (distance 
between cluster means)

There are other ways as well: 
none are perfect



Hierarchical Clustering

Demo



Bottom-up: Agglomerative Clustering
Some ways to define what it means for two clusters to be “close”  
(needed to find most similar clusters):

Single linkage: use distance 
between closest points 
across the two clusters

Complete linkage: use 
distance between 
farthest points across 
the two clusters

Centroid linkage: what 
we saw already (distance 
between cluster means)

There are other ways as well: 
none are perfect

Ignores 
# items in 

each cluster
Has “chaining” 

behavior

Has “crowding” 
behavior
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Generative models

There’s a whole zoo of clustering methods

Hierarchical clustering
Top-down: Start with everything in 1 

cluster and decide on how to 
recursively split

1. Pretend data 
generated by specific 

model with parameters
2. Learn the parameters 

("fit model to data")
Bottom-up: Start with everything in its 

own cluster and decide on how to 
iteratively merge clusters

Two main categories we'll talk about:

3. Use fitted model to 
determine cluster assignments



Going from Similarities to Clusters
Generative models Hierarchical clustering

Top-down: Start with everything in 1 
cluster and decide on how to 

recursively split

1. Pretend data 
generated by specific 

model with parameters
2. Learn the parameters 

("fit model to data")
Bottom-up: Start with everything in its 

own cluster and decide on how to 
iteratively merge clusters3. Use fitted model to 

determine cluster assignments

You learn a model 
➔ can predict cluster assignments 

for points not seen in training

Easily works with different distances 
(not just Euclidean)

Great for problems that don’t need 
to predict clusters for future points

The most popular models effectively 
assume Euclidean distance…

Different split/merge criteria lead to 
clusters that look specific ways 

(e.g., chaining, crowding)



Example: Clustering on U.S. Counties

No need to predict which cluster new counties should 
belong to, since we’re already looking at all U.S. counties!

(using opioid death rate data across 37 years)

Image source: Amanda Coston



How to Choose a Clustering Method?

Some questions to think about:

• For your application, what distance/similarity makes sense?

• Do you care about cluster assignments for new points?

In general: not easy!

• What features to even cluster on?

It’s possible that several clustering methods give similar results 
(which is great! — it means that there are some reasonably 
“stable” clusters in your data)

• Example: tons of clustering methods can figure out from 
senate voting data who Democrats and Republicans are (of 
course, without knowing each senator’s political party)



Clustering Last Remarks
Ultimately, you have to decide on which clustering method and 
number of clusters make sense for your data

If you can set up a prediction task, then you can use the 
prediction task to guide the clustering

• After you run a clustering algorithm, make visualizations to 
interpret the clusters in the context of your application!

• Some times it makes more sense to define your own score 
function for how good a clustering assignment is

• Do not just blindly rely on numerical metrics  
(e.g., CH index)


